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Abstract. Named Entity Recognition (NER) is a foundational tech-
nology for systems designed to process Natural Language documents.
However, many existing state-of-the-art systems are difficult to integrate
into commercial settings (due their monolithic construction, licensing
constraints, or need for corpuses, for example). In this work, a new NER
system is described that uses the output of existing systems over large
corpuses as its training set, ultimately enabling labelling with (i) better
F1 scores; (ii) higher labelling speeds; and (iii) no further dependence on
the external software.

Keywords: Named Entity Recognition, NER, Natural Language Pro-
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1 Introduction

One key capability required of natural language processing (NLP) systems is to
be able to identify the people, organisations and locations mentioned in a given
text. These labels (plus further categories that include times, dates, and numeric
quantities, for instance) are essential for understanding the facts described, yet
they do not per se add much to the linguistic structure of the text. There-
fore, building systems that can reliably perform this Named Entity Recognition
(NER) has been a focus of NLP research, since it is an essential stepping-stone
to exploring the other linguistic content in unstructured text.

Unfortunately, while the NER task might be considered largely conquered
from a linguistic research viewpoint, building an effective system is still a chal-
lenge in a commercial setting :

1. Licenses for many existing academic systems are not conducive to being
embedded within commercial systems

2. Often, existing codebases focus on ‘tweaks’ rather than solid engineering
3. Commercial systems may have particular task-specific requirements that are

difficult to implement on a pre-built system
4. Training corpuses can be a limiting factor, since commercial uses focus on

specific domains of interest, rather than domains that have well understood
corpuses already available
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This work describes an NER system that can be trained from the output of
‘known good’ systems. Since the system developed here only requires large vol-
umes of (machine) annotated text, it essentially sidesteps several of the problems
that these existing systems have in commercial settings.

Moreover, the experiments show that the new system can learn to be better
than its teachers - both in the test scores obtained and labelling speed.

Importantly, the results obtained during training and testing are described
here in full - the models have not been cherry-picked and tweaked for publication
- which illustrates the robustness of this type of model and training process.

2 Model

2.1 Vocabulary Building

As described below, the CoNLL-2003 [1] NER datasets were chosen as the test-
bed for this work, and the unlabelled ‘Large Corpus’ was used to build the
vocabulary and word-embedding features.

A vocabulary was built from the contents of the whole Large Corpus (there
were 484k distinct tokens in the 1.0Gb corpus) with the following additional
tokenization steps taken prior to insertion into the dictionary :

1. Convert to lower case

2. Replace each string of digits within the token with NUMBER (so that, for
instance, ‘12.3456’ becomes ‘NUMBER.NUMBER’)

2.2 Word Embedding Layer

Skip-gram embeddings of size 100 were pre-trained over the whole large corpus
and vocabulary using word2vec[2] as provided by the Python package gensim[3]
(this required only 15 minutes of wall-clock time).

The token embedding was filtered so that only tokens with 10 mentions
or more were included, yielding an effective vocabulary size of 118,695 distinct
tokens. To cope with words not present in the embedding, a special token <UNK>
was added to the embedding space, with a vector that corresponded to the mean
vector over the rest of the known dictionary.

2.3 Additional Features

The only feature added to the vector representation of each token was an indi-
cator {0,1} as to whether that token/word had originally contained upper-case
characters. Therefore, for each token the extended vector given to the next stage
was 101 elements in length.
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2.4 Bi-Directional Recurrent Neural Network (RNN)

Having mapped each token to a numerical input vector, a bi-directional recurrent
neural network was used to map the token embeddings to hidden states. Since
each timestep corresponded to exactly one output label, it was not necessary to
separate ingestion and output RNNs : a lock-step arrangement was sufficient.

The model was built using Theano using the recently announced blocks[4]
framework, which provides many useful primatives, and is currently under active
development. The sizes of the embedded parameters are given in Table 1.

In the interests of initially keeping the model as simple as possible, a very
basic recurrent network was used :

hF
t = tanh(WFhF

t−1 + xt)

hB
t = tanh(WBhB

t+1 + xt)

where hF
t and hB

t refer the hidden states in the forward and backward chains
respectively; WF and WB refer to independent weight matrices for each chain,
and xt is the extended token vector.

The initial conditions to the forward and backward chains, hF
−1 and hB

T+1

are set to values (that are also trainable inputs) at the beginning and end of
each sentence respectively.

Labelling Output Layer One feature of the CoNLL-2003 datasets was that
in addition to the basic {PER, ORG, LOC, MISC} entity labels, there were also
specific ‘Beginning’ labels to be used to separate two entities which abutted
against each other without any other intervening token. However, situations in
which this actually arose were very rare (respectively {0.0%, 0.2%, 0.1%, 0.7%}
of each token’s occurrences). Therefore, to simplify the output stage logic, only
5 labels were learned (the entity labels, plus O for non-entity tokens).

The output stage consisted of a dense linear layer (with bias), with each of
the 5 label outputs at a given timestep connected to all the RNN hidden units at
the same timestep (both forwards and backwards chains), followed by softmax :

dt = XFhF
t + XBhB

t + bt

pi
t =
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i
t∑

k e
dk

t

where dt refers to the linear combination over the RNN outputs at that timestep;
XF and XB refer to independent weight matrices for each chain; bt is a bias
term; and pt is the softmax output for the assigned label.

This ‘one-hot’ representation was trained using Categorical Cross-Entropy
for each label summed over batches of sentences as an objective function for
gradient descent, which used an ADADELTA[5] step rule.

During the test phase, labels were simply read from the output stage, without
post-processing.
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Table 1. Model Parameters

Parameter Set Notation Shape # of Float32

Word Embedding (all tokens) x (118695, 100) 11,869,500

Generated features token ucase() (..., 1) n/a

State transition matrices WF and WB (101, 101) × 2 20,402

State initialisation vectors hF
−1 and hB

T+1 (101, 1) × 2 202

RNN outputs to label matrix XF and XB (202, 5) 1,010

RNN outputs to label biases bt (1, 5) 5

Total (RNN only) 21,619

Total Model 11,891,119

2.5 External Models

As a basis for learning, the RNN was trained against the provided training set
(3.3Mb) as well as the Large Corpus labelled by two external models. These mod-
els were chosen because they are both state-of-the-art, have acceptable licenses
and were easiest to use off-the-shelf.

Please note that this paper’s results are only possible because its RNN models
are able to ‘stand on the shoulders of giants’ : there is no intention here to detract
from the fine work that went into creating these models in the first place.

Other potential candidate models are mentioned below (in Related Work),
but studying the following was sufficient for the present experiments.

In all cases, care was taken to ensure that the models all treated the given
tokenization in the same way, and that the results obtained from the models
alone matched the reported results.

MITIE According to its GitHub page (https://github.com/mit-nlp/MITIE),
the MITIE project (built around dblib [6]) is a state-of-the-art information ex-
traction tool, which performs named entity extraction and binary relation detec-
tion. It is available under a permissive Open Source license (which, interestingly,
was one of the key objectives of the funding for the project provided by the
DARPA XDATA program).

Model files specifically constructed for the CoNLL 2003 NER task are avail-
able for download. All MITIE output here was created using the 343Mb model
file english ner model just conll.dat.bz2.

Stanford Named Entity Recognizer According to its substantial documen-
tation page (http://nlp.stanford.edu/software/CRF-NER.shtml) the Stan-
ford Named Entity Recognizer provides a general implementation of (arbitrary
order) linear chain Conditional Random Field (CRF) sequence models [7], and
is included in the Stanford CoreNLP suite of NLP tools.
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According to Stanford’s NER benchmarks, the Stanford model was used to
submit results in the original CoNLL-2003 competition, and performed well. The
model file used here (v3.5.2 of english.conll.4class.distsim.crf.ser.gz) is
close to (or an improvement on, it is unclear) the original CoNLL-tuned version.
The compressed model size appears to be approximately 110Mb.

3 Experiments

3.1 CoNLL-2003

The experimental setting chosen was the same as given in CoNLL-2003 [1]. This
provided several distinct datasets (statistics for which are given in Table 2), each
of which were tokenised using the CoNLL-provided scripts :

“Large Corpus” This consists of 10 months of Reuters news stories, with no
labelling provided;

Training Set This is a labelled set of data that models can be trained on -
with the option also available (in 2003) of using external training data too;

Development Set This is a hold-out labelled test set (‘testa’) which was set
aside for validation and/or hyper-parameter selection;

Test Set This is the labelled test set (‘testb’), with scripts provided to calcu-
late recall/precision/F1 scores both overall and for each category label.

Table 2. Data set sizes

Data sizes Bytes Words Sentences

“Large Corpus” 1.0Gb 184,717,139 11,869,032

Training Set 3.3Mb 204,567 14,987

Development Set 827Kb 51,578 3,467

Test Set 748Kb 46,666 3,685

As described earlier, no additional pre- or post- processing was applied to the
data.
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3.2 Models and Training

Training Initial training runs used 15 million labelled sentences (this figure
was chosen to be approximately 1000 epochs on train - sufficient to fully learn
the CoNLL-2003 provided data). For the more extensive runs, the number of
labelled sentences was arbitrarily fixed at 100 million (this count does not include
sentences that were excluded by the ‘Consensus’ technique below).

Expert Scores Included in Table 3 are results for the base scores for the two
expert models. These figures agree with their previously reported scores.

RNN learning from individual Experts Test results are given for 15 and 100
million sentences of training (over the output of the respective expert labelling
of the Large Corpus). These results are surprisingly close to the expert they are
being trained from, despite having no knowledge of the internal workings (or
tweaks, tricks, etc) being used.

In order to test the variability of models built, the ‘RNN-MITIE’ model was
trained with 15 different random number seeds for the internal model initialisa-
tion (using, however, from the same initial word embedding data). The resulting
set of testb F1 scores had mean 88.15% and standard deviation of 0.14%.

RNN trained on Training Set alone Although the RNN has the benefit
of a word embedding derived from the Large Corpus, the results show that
solely learning the labelling task from the training data set (1000 epochs) was
insufficient for good performance.

RNN ‘Mixer’ This RNN was trained from a data source that took (in turn)
one sentence from each of the Training Set, and Large Corpus sets as labelled by
the MITIE and Stanford experts (i.e. 3 sources in equal measure - even though
this implies considerably more epochs of Training Set data, since it is so much
smaller in size).

RNN ‘Consensus’ These RNNs were trained from a data source that took a
fixed proportion α of sentences from the Training Set (given as a percentage in
Table 3), and sentences whose labelling both the MITIE and Stanford experts
agreed upon in full. The fixed proportion α, viewed as a hyper-parameter, was
chosen according to the RNN performance on the Development Set (this was the
only time the testa dataset was used).

Ensembling Simple ensembles of the most promising ‘Consensus’ RNNs and
the given experts were created (one of each type, doing a simple vote for each
output label). In addition, RNN models trained on each expert were also tested
as members of ensembles, to see whether ensembling gains could be made using
solely RNN-trained models.



Named Entity Recognition through Learning from Experts 7

Table 3. F1 scores for individual and ensembled models

Sentences Training Dev. Set Test Set

(millions) Set F1% F1% F1%

Individual Models

Expert-MITIE n/a 96.98 97.11 88.10

Expert-Stanford n/a 97.66 91.79 88.19

RNN-MITIE 15 90.43 91.11 86.58

RNN-MITIE 100 93.08 93.25 88.08

RNN-Stanford 15 90.19 89.03 85.51

RNN-Stanford 100 91.93 90.26 86.24

RNN-TrainSet 15 99.62 84.47 79.50

RNN-Mixer 100 99.50 93.39 88.76

RNN-Consensus-00% 100 94.01 93.04 88.64

RNN-Consensus-05% 100 98.65 93.66 89.45

RNN-Consensus-10% 100 99.38 93.60 89.51

Ensemble Models (100 million sentences)

Consensus-05 + RNN-MITIE + RNN-Stanford 95.85 93.64 89.52

Consensus-05 + Expert-MITIE + RNN-Stanford 97.77 94.69 89.68

Consensus-05 + RNN-MITIE + Expert-Stanford 98.22 94.08 89.92

Consensus-05 + Expert-MITIE + Expert-Stanford 98.72 95.34 90.12

Consensus-10 + Expert-MITIE + Expert-Stanford 99.00 95.38 90.18

4 Analysis

4.1 The CoNLL-2003 task

One surprising aspect of the CoNLL-2003 task was that the testb data set
(on which final F1s are measured) appears to be significantly different from the
training data given. Several features stand out :

1. There are many sports scores in testb (presumably because Reuters news
carried a lot of these articles during that end-of-summer time period);

2. Sports score summaries contain a lot of numeric tokens, with little in the
way of other linguistic structure;

3. Sometimes labelling of teams can be problematic, with ‘China’ being both
a location and a team (organisation) name.

The difficulty of testb is noticable specifically in the F1 scores for ‘RNN-
TrainSet’, which completely ignores testa during training. Note, though, that
all the other training runs may have implicit dependencies on testa simply
because the MITIE and Stanford systems may have relied on hyper-parameter
selection based on testa performance.
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4.2 Model Complexity

As mentioned in the description of the models used, an attempt was made to
keep the model becoming more complicated than necessary. The results obtained
indicate that the Simple Recurrent setup used is sufficient for the NER task.

However, for more complex tasks, it seems likely that Gated Recurrent Units
(GRU[8]) or their highly parameterized predecessor Long Short-Term Memory
(LSTM[9]) may have more expressive power (particularly since these are now
commonly being stacked in layers). Fortunately, the blocks framework chosen
here is flexible enough to accommodate these enhancements.

In the context of the NER task, it is possible that the Stanford model incor-
porates processes that are difficult to learn for the Simple Bi-Directional RNN
used - as evidenced by the F1 scores converging more slowly during training than
is the case for the MITIE model. In addition, during ensembling, using RNN-
Stanford was significantly less impactful than RNN-MITIE, which is a pity, since
the Stanford model is heavier computationally, as can be seen from Table 4.

Table 4. System labelling speed

Sentences Comment

per second

Expert-MITIE 1,646 OpenBLAS / Lapack found during compilation,
but the system appeared to run single-threaded

Expert-Stanford 48 This was invoked through Stanford CoreNLP, but
only stages relevant to NER were run

RNN (all) 3,123 This implementation was GPU-based, and tim-
ings were taken during backprop training (simply
labelling requires fewer operations)

4.3 Implementation Speed

The RNN implementation benefited significantly from using a consumer-grade
GPU. One feature of the Theano/blocks framework is that the model descrip-
tion is coded independent of the target computing device, since Theano is capable
of dynamically creating C++, OpenCL, and CUDA code as required.

By choosing an appropriate batch size for the training (so that multiple
sentences to be trained in parallel), a speed-up of 35x was realized over the
initial choice of parameters used by example code online (see Table 5).

A GPU blocksize of 256 was chosen, since higher blocksizes appeared to cause
significant delays in saving Checkpoint data to disk (the 1Gb files saved for the
256 blocksize were deemed acceptable).

Overall, the training time on each 100 million sentence experiment was 7-8
hours. The Consensus experiments took approximately 50% longer, solely be-
cause much of the data ingested was immediately discarded (and not learned).
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Table 5. Training time in seconds on 150k sentences (lower is better)

CPU GPU

i7-4770 CPU GTX 760

batchsize @ 3.40GHz (2Gb)

8 1030 455

64 254 70

256 211 29

512 n/a 23

4.4 Consensus Methods

Evidently, training a model solely on the data upon which experts agree is an
effective approach. What is surprising is that it still works in the cases where
the experts would disagree, because the model would not have received training
from either expert in these circumstances.

Comparing the Consensus models with ‘Mixer’ (which is very similar in de-
sign, except that no filtering is taking place : the three sources of training data
are used on a round-robin basis), it is clear that filtering the training examples
is actually beneficial to learning.

There is also a sense in which the Consensus models are performing an
ensembling-together of three different training datasets - with the ensemble vot-
ing taking place during the ingestion phase, rather than on the final output
labels. Interestingly, this puts a heavy burden on the generalization ability of
the RNN model to cases in which its supposed teachers disagree. Apparently,
this is something these models are capable of doing.

4.5 Ensembling

The best results obtained in this paper were (unsurprisingly) from ensembles of
models. Indeed, some of these results broke through the apparent 90% F1 score
barrier. However, it was somewhat disappointing that ensembles of pure RNN
models didn’t reach the same levels of performance of RNN models ensembled
with the original experts. This is particularly true of the Stanford model, which
is the more desirable of the two models chosen to eliminate (due to speed and
licensing considerations).

On the other hand, from a practical point of view, optimising out the last
ounce of performance is probably less important than the overall lessons to be
learned : Ensembling does work between models, but the implicit ensembling
provided by the training of the Consensus models may be both more robust and
easy to implement.

4.6 Further Enhancements

The commercial setting in which this work takes place is particularly focused on
English-language documents sourced from the ASEAN region.
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Given the variability of names in the region (specifically names of people),
and their ‘obvious’ differences in spelling from English words, one further en-
hancement to the system is the creating of additional word features using a
letter-based RNN trained on databases of English prose and ASEAN names
(these corpuses have already been curated).

Thus, instead of embedding concrete gazetteers (as is common for more tra-
ditional systems), the plan is to train an RNN on the NER task on a character-
by-character basis. The trained RNN can then be ‘cut off at the output stage’
so that its internal pre-output state (a 20 element vector) can be used as addi-
tional features for each token for the RNN described in this paper (name tokens
that might otherwise all be assigned to UNK). This scheme may also offer the
opportunity to further characterize names by country-of-origin, for instance.

5 Related Work

Surprisingly, an approach that used LSTM neural networks was previously un-
dertaken for the CoNLL task in 2003 [10]. However, this was published well
before importance of word-embedding was understood, so the results reported
there (<75% F1 overall) are essentially from a different era.

Work by Collobert et al [11] published in 2011, demonstrated that a pure
data-driven neural network approach to language tasks can be very effective.
They made use of extensively trained word-embeddings, but did not make use
of Recursive Neural Networks (their ‘sentence scoring’ element was performed
using a max-pooling approach over a convolutional layer on top of the word
embeddings). Their sofware SENNA is published under a No Commercial Usage
license, and achieves approximately the same performance as the Consensus
models created here.

Presented at ICLR (in May 2015), Oriol Vinyals et al [12] essentially repur-
posed Google’s LSTM translation framework to learn ‘Grammar as a foreign
language’. This task is more difficult than the step-wise labelling performed
herein, and required considerably larger computation resources. For example,
their network needed to produce 100 different labels, and they made use of
a 512-dimensional embedding, and large multi-layered LSTM networks with a
4000-dimensional internal state. Overall, their model included 34 million train-
able parameters. That being said, their approach strongly influenced the direc-
tion of this work.

5.1 Other External Models Considered

Berkeley Entity Resolution System The Berkeley NER[13] system is also
a state-of-the-art NER system, and is part of the suite of software used in the
‘Grammar as a Foreign Language’ work cited above. It is GPL3+ licensed, which
would be acceptable for the current work, however it was not used here purely
for time reasons.
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Illinois Named Entity Tagger This NER system[14], created by the Cogni-
tive Computation Group from the University of Illinois at Urbana-Champaign,
reports scoring 90.8% testb F1 on the CoNLL-2003 task, which makes it an
attractive candidate system to learn from.

However, despite the Illinois NER system being available under a broadly
copyleft license to a Licensee for “its own academic and research purposes”, the
license includes the following explicit non-commercial usage clause :

“No license is granted herein that would permit Licensee to incorporate
the Software into a commercial product, or to otherwise commercially
exploit the Software. ”

This current work illustrates the type of legal questions that learning systems
bring into focus : If the software is solely used to create a corpus annotation,
and a model is trained from that corpus, has the Software been commercially
exploited? Is the Licensor asserting come kind of usage rights over all output
of the Software? This is surely a new set of challenges to be faced by software
license writers, similar to how the GPL has evolved to avoid the ‘Tivoization’
problem.

6 Conclusions

This work has shown that it is possible to build a near state-of-the-art NER
system based solely on the output of externally created software systems.

Even without ensembling (from which even better results were obtained),
the resulting system was shown to have learned to exceed the capabilities of its
teachers, while being significantly more amenable to usage within a commercial
environment.
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8 Appendix

Working code to implement the RNN scheme outlined in this paper is available
through links on : https://github.com/mdda
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