

Transformer to CNN: Label-scarce distillation for efficient text classification

Yew Ken Chia ken@RedDragon.ai

Sam Witteveen sam@RedDragon.ai

Martin Andrews martin@RedDragon.ai

Summary

Task:

▲ Efficient text classification

Industry Constraints:

- ▲ Inference speed/latency
- ▲ Memory footprint
- ▲ Lack of labelled data

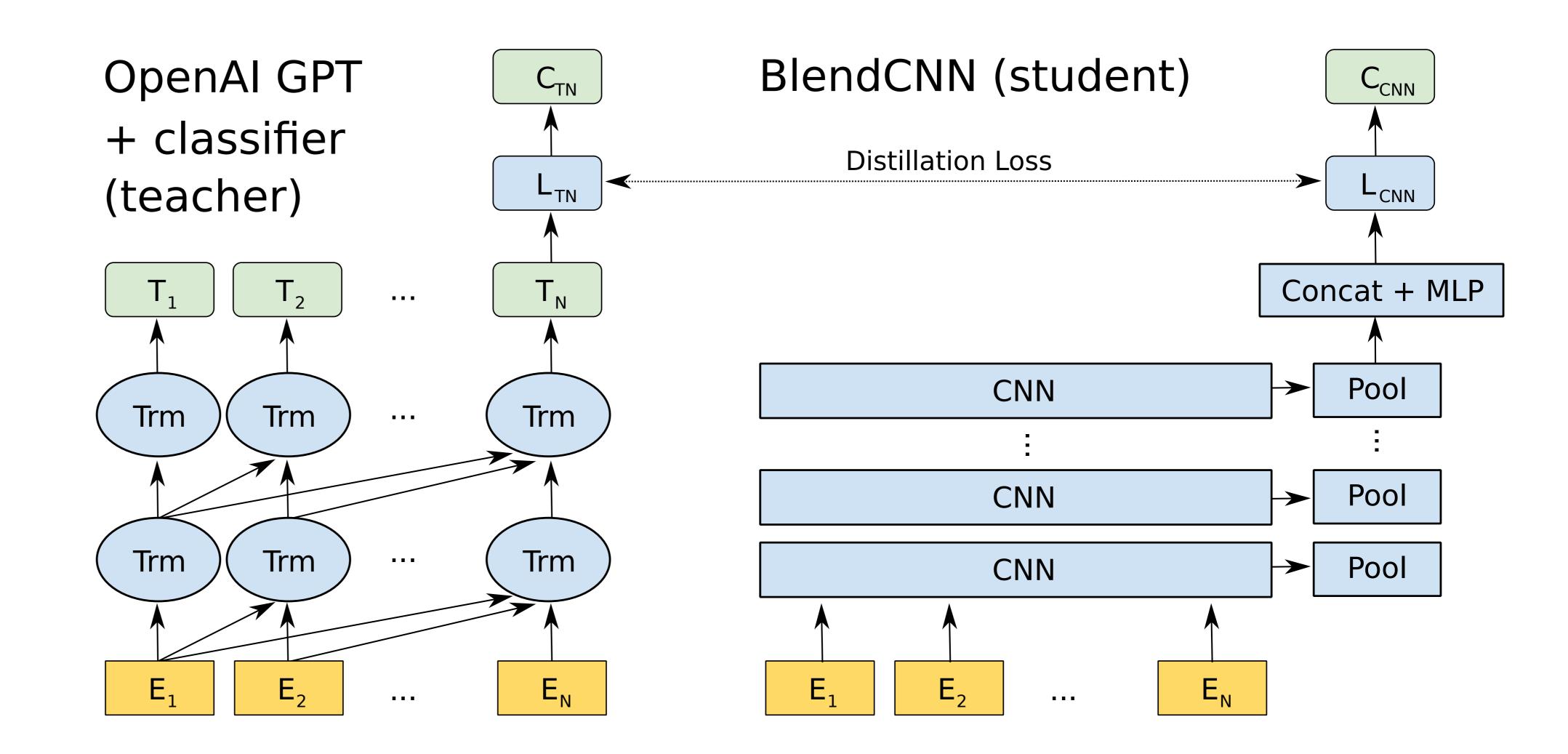
Ideas:

- ▲ Train SOTA Transformer-based model
- ▲ Benefit from including unlabelled data
- ▲ Develop high-efficiency CNN student

Results:

- ▲ Same accuracy as Transformer model
- ▲ 39x fewer parameters
- ▲ 300x faster inference speed

Teacher / Student Model Architecture



Results

	AG News	o DBpedia	Yahoo Answers	
Trained on 100 labelled examples per class				
TFIDF + SVM	81.9	94.1	54.5	
fastText	75.2	91.0	44.9	
8-Layer BlendCNN	87.6	94.6	58.3	
OpenAI Transformer	88.7	97.5	70.4	
TRAINED BY DISTILLATION OF OPENAI TRANSFORMER				
2-Layer BiLSTM	91.2	97.0	70.5	
KimCNN	90.9	97.6	70.4	
3-Layer BlendCNN	91.2 / 88	$.4^2$ 98.2 / 95.5	71.0 / 63.4	
8-Layer BlendCNN	91.2 / 89	.9 98.5 / 96.0	70.8 / 63.4	

Distillation training used 100 labelled examples per class, plus 10 times as many unlabelled examples as pseudo-labelled by the OpenAI LM

Parameter counts and inference timing

	Total parameters ²	Sentences per second ³
2-Layer BiLSTM ¹ KimCNN	2,406,114 2,124,824	173.01 3154.57
OpenAI Transformer 8-layer BlendCNN 3-layer BlendCNN	116,534,790 3,617,426 2,975,236	11.76 2392.34 3676.47

Discussion

Motivation:

- ▲ Low number of labelled examples
- ▲ Newer techniques include fine-tuning
- ▲ Large LM inference cost is prohibitive

Initial Training of Teacher:

- ▲ Leverage pre-trained LM
- ▲ Fine-tune Transformer classifier with labelled data

Student Features:

- ▲ Pure CNN architecture
- ▲ Hierarchical outputs from CNN
- ▲ Pseudo distillation (incl. Unlabelled)
 - > Labelled-only distillation
 - > Labelled-only training from scratch

Future directions:

- ▲ Explore distillation on other NLP tasks
- ▲ Test benefits of hierarchical outputs
- ▲ Update to use BERT as teacher

Source code available:

http://RedDragon.ai/research

Key References

- "Distilling the knowledge in a neural network." Hinton et al. (2015)
- "Deep contextualized word representations" Peters et al. (2018)
- "Improving language understanding with unsupervised learning" Radford et al. (2018)

Contact

martin@RedDragon.ai +65 8585 1750 http://RedDragon.ai

² Small figures are results where distillation was conducted without unlabelled data