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Attention Graph : Model Architecture
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Dataset - Visual Genome (with MS COCO splits)
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: Figure 1: Example from data exploration site for [20]. For this region, possible graph objects
ATTR® open : would be {cat, mouth}, attributes {brown<—cat, black<-cat, white<-cat open<—mouth},
and relationships {cat<-has<-mouth, mouth<-0N<-cat}.

Model Architecture :
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A Training builds on pretrained LM
A Simplest attention mechanism used
A No hyperparameter search done

Table 1: SPICE metric scores for the Oracle
(using code released by [13]) and our method,
under the base assumptions, and also where
the number of tuples 1s bounded above by the
number of potentially useful words 1n the re-
gion description

Parser F-score F-score F-score

reported (our (limited

n [13] tests)  tuples)

Attn. Graph 0.5221  0.5750
(ours)

Oracle 0.6985 0.6630 0.7256

Table 2: SPICE metric scores between scene
graphs parsed from region descriptions and
ground truth region graphs on the intersection

of Visual Genome [20] and MS COCO [22]
validation set.

Parser F-score
Stanford [23] 0.3549
SPICE [14] 0.4469
Custom Dependency Parsing [13]  0.4967
Attention Graph (ours) 0.5221
Oracle (as reported 1n [13]) 0.6985
Oracle (as used herein) 0.6630

Future directions :

A Apply to bigger graph chunks

A Adapt to more general graphs

A Encoder/decoder Transformers for
sequence-to-graph

Source code available:
A http://RedDragon.ai/research
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