

Scene Graph Parsing by Attention Graph

Martin Andrews martin@RedDragon.ai

Yew Ken Chia ken@RedDragon.ai

Sam Witteveen sam@RedDragon.ai

Summary

Attention Graph : Model Architecture

Task :

Convert text to graph representation

Builds upon :

- Visual Genome dataset : text & graphs
- ▲ Transformer architecture

Ideas :

- OpenAl Transformer model as base
- Train additional attention layer
- Parent" links defined by attention
- ▲ Graph linkages directly from top layer

Results :

- A Higher scores than transition-based parsers
- ▲ Early results encouraging...

Dataset - Visual Genome (with MS COCO splits)

Discussion

Text :

▲ Cat has his mouth open

To Graph :

Regions	Attributes	Relationships
cat has his mouth	mouth is open	mouth ON cat
open	leg is white	cat has mouth
open mouth of a cat	cat is brown	cat has leg
white front legs of	cat is black	cat has tail
cat	head is white c	cat has head
tail of cat is brown	ears is pointy	ears ON cat
tail of cat has black stripes	whisker is long	cat has eyes
	cat is white	cat has whisker
head of cat is white and black	tail is brown	cat ON bed
two pointy ears of cat		

the eyes of cat

Figure 1: Example from data exploration site for [20]. For this region, possible graph objects would be {cat, mouth}, attributes {brown <- cat, black <- cat, white <- cat open <- mouth}, and relationships {cat \leftarrow has \leftarrow mouth, mouth \leftarrow ON \leftarrow cat}.

Results

 Table 1: SPICE metric scores for the Oracle
(using code released by [13]) and our method, under the base assumptions, and also where the number of tuples is bounded above by the number of potentially useful words in the re
 Table 2: SPICE metric scores between scene
graphs parsed from region descriptions and ground truth region graphs on the intersection of Visual Genome [20] and MS COCO [22] validation set.

Motivation :

- Benefits of creating KB from text
- Transition-based parsers seem limited
- Elegance of lifting attention to graph

Dataset issues :

- \blacktriangle Ground truth results < 100%
- Heuristics can improve a little
- Looking for alternatives

Model Architecture :

- Training builds on pretrained LM
- Simplest attention mechanism used
- No hyperparameter search done

Future directions :

- Apply to bigger graph chunks
- Adapt to more general graphs

gion description

Parser	F-score reported in [13]	F-score (our tests)	F-score (limited tuples)
Attn. Graph (ours)		0.5221	0.5750
Oracle	0.6985	0.6630	0.7256

Parser	F-score
Stanford [23]	0.3549
SPICE [14]	0.4469
Custom Dependency Parsing [13]	0.4967
Attention Graph (ours)	0.5221
Oracle (as reported in [13])	0.6985
Oracle (as used herein)	0.6630

Encoder/decoder Transformers for

sequence-to-graph

Source code available:

http://RedDragon.ai/research

Key References

"Scene graph parsing as dependency parsing" - Wang et al. (2018) "Visual genome: Connecting language and vision using crowdsourced dense image annotations" - Krishna et al. (2016)

"Improving language understanding with unsupervised learning" - Radford et at. (2018)

Contact

martin@RedDragon.ai $+65\ 8585\ 1750$ http://RedDragon.ai