C๕LING

 2020
LIT : LSTM-Interleaved Transformer for Multi-Hop Explanation Ranking

Yew Ken Chia
ken@RedDragon.ai

Martin Andrews
martin@RedDragon.ai

Summary

Shared Task :

- Rank explanation sentences for elementary school science questions

Data Used :

- WorldTree V2 Corpus
- 'Common sense' embedded in BERT

Ideas:

- Improve BM25 ranking incrementally
- Use interaction between explanations
Δ LSTM chains for rank-aware interaction

Results:

A Submitted score : 0.4793

- Better methods submitted soon after

Key References

- "TextGraphs 2020 Shared Task on MultiHop Inference for Explanation Regeneration" - Jansen and Ustalov (2020)
" "Colbert: Efficient and effective passage search via contextualized late interaction over BERT" - Khattab and Zaharia (2020)
- "Modeling document interactions for learning to rank with regularized selfattention" - Sun and Duh (2020)
- "Parameter-efficient transfer learning for NLP" - Houlsby et al. (2019)

Three Methods with Increasing Test Scores

LIT Detail

Enhanced Information Distribution:

- Use adapter layer in Transformer modules
- Link document representations using LSTM
- Earlier information flow improves results

Results

Model	Dev MAP	Test MAP
BM25	0.4615	
Iterative BM25 (Chia et al., 2019)	0.4704	
I-BM25	0.4861	0.4745
I-BM25 + LSTM + Transformer	0.5470	0.5294
I-BM25 + LIT	0.5680	0.5607

Table 1: Main score comparison on WorldTree V2 dataset

A Investigation of different Loss functions:

Loss Function	Dev MAP
LambdaLoss	0.4970
APLoss	0.5187
Binary Crossentropy	0.5680

Discussion

Updated Dataset

A Larger set of Q\&A and facts
Δ Larger training set / more 'distractors'

- Still not totally clean

Preprocessing :

\triangle Use spaCy for lemmatisation

- I-BM25 is enhanced from 2019 version
- "Combo statements" still W.I.P.

Focus on Transformer Reranking :

- DistilBERT used for 'common sense
- Novel LIT architecture

A Tried GNN methods, but observed same problems as other participants

Future directions:

- Still don't have solid grounding for Graph-based methods
Δ LIT architecture shows promise as a drop-in replacement for other Q\&A tasks

Code \& Contact

Source code is on GitHub, see: - http://RedDragon.ai/research

Contact:

martin@RedDragon.ai
+65 85851750
http://RedDragon.ai

